Structure of a Novel 60-Membered Macrolide. **Ouinolidomicin** A₁

Yoichi Hayakawa, Kazuo Shin-ya, Kazuo Furihata,[†] and Haruo Seto*

Institute of Applied Microbiology and Department of Agricultural Chemistry The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received July 17, 1992

In the course of our screening for antitumor antibiotics, we isolated a novel macrolide, quinolidomicin A_1 (1), from an actinomycete Micromonospora sp.1 1 was highly cytotoxic against P388 murine leukemia cells (IC₅₀ 8 nM).

The MeOH extract of the cultured mycelium (2 L) was subjected to silica gel chromatography, followed by Sephadex LH-20 chromatography and normal-phase HPLC on Aquasil (Senshu Scientific Co.) with CHCl₃/MeOH (10:1) to give an orange powder of 1 (9 mg).^{1,2}

The molecular formula of 1 was determined to be $C_{83}H_{132}O_{23}S$ by HRFABMS $[m/z \, 1551.8774 \, (M + Na)^+, \Delta - 0.7 \, mmu]$. The ¹³C NMR spectrum confirmed the presence of 83 carbons, and the HSQC3 spectrum established all one-bond ¹H-¹³C connectivities (Table I).

Phase-sensitive DQF-COSY⁴ and HMBC⁵ experiments generated partial structures 2-6 (Figure 1). The characteristic UV absorptions² at λ_{max} 257, 268, and 279 nm indicated the presence of a triene group formed by the connection of C-40 and C-41.

A partial structure including C-47-C-55 presented the most difficult part of the structure determination because of the severe overlap of the methylene signals in the ¹H spectrum and was elucidated by a phase-sensitive HSQC-HOHAHA^{3,6}experiment, which showed relayed connectivities from 47-H to C-48 and C-49, from 55-H to C-54, C-53, and C-52, and from 50-CH₃ to C-48, C-49, C-50, C-51, and C-52. The sequence of C-21-C-25 was also assigned on the basis of the relay from 23-H to C-21, C-22, C-24, and C-25, and from 25-H to C-22, C-23, and C-24.

A new technique using phase-sensitive ¹³C-decoupled HMBC⁷ revealed a correlation between a broad multiplet oxymethine proton (59-H) and an ester carbonyl carbon (C-1) to generate a 60-membered lactone ring. The protons on C-4-C-7 showed large vicinal-coupling constants ($J_{4ax-5} = 10.5$, $J_{5-6} = 10.5$, and

Department of Agricultural Chemistry.

be published elsewhere. (2) 1: mp 142–147 °C; $[\alpha]^{24}_{D}$ +50° (c 0.1, CHCl₃/MeOH 1:1); UV λ_{max} (ϵ) 232 (93 500), 257 (42 500), 268 (49 600), 279 (37 900), 365 (6600) nm in MeOH.

(4) Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185-189.

(5) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-2094.

(6) Lerner, L; Bax, A. J. Magn. Reson. 1986, 69, 375-380. (7) Williamson, D. S.; Smith, R. A.; Nagel, D. L.; Cohen, S. M. J. Magn. Reson. 1989, 82, 605-612.

Figure 1. Partial structures of quinolidomicin A1 with bold lines showing proton spin networks derived from DOF-COSY data and arrows showing ¹H-¹³C long-range correlations derived from HMBC data.

Table I. ¹³C and ¹H NMR Data for Quinolidomicin A₁ in CD₃OD

no.	δ _C	δ _H	no.	δ _C	δ _H
1	171.7 (s)		43	132.0 (d)	5.75
2	47.8 (t)	2.66, 2.61	44	41.9 (t)	2.29
3	97.5 (s)		45	71.3 (d)	3.82
4	43.9 (t)	2.10, 1.58	46	43.9 (t)	1.58, 1.49
5	70.4 (d)	3.49	47	71.6 (d)	3.71
6	41.3 (d)	1.35	48	35.9 (t)	1.40
7	75.4 (d)	3.63	49	33.4 (t)	1.41, 1.13
8	38.0 (d)	1.70	50	33.8 (d)	1.40
9	79.0 (d)	3.43	51	38.0 (t)	1.33, 1.13
10	35.2 (d)	3.00	52	26.8 (t)	1.42, 1.30
11	134.2 (d)	5.52	53	28.1 (t)	1.32
12	125.0 (d)	6.27	54	38.7 (t)	1.43
13	122.9 (d)	6.42	55	71.4 (d)	3.75
14	140.0 (s)		56	45.3 (t)	1.57
15	81.0 (d)	4.10	57	67.8 (d)	3.83
16	41.2 (d)	1.77	58	43.5 (t)	1.87, 1.62
17	73.5 (d)	3.90	59	73.5 (d)	5.46
18	38.3 (t)	1.62, 1.58	60	130.2 (d)	5.54
19	75.7 (d)	3.55	61	134.5 (d)	6.22
20	40.4 (d)	1.51	62	129.4 (d)	5.98
21	28.8 (t)	1.50, 1.24	63	142.7 (d)	5.57
22	36.4 (t)	1.50	64	38.1 (d)	2.16
23	71.4 (d)	3.72	65	34.3 (t)	1.45, 1.20
24	45.4 (t)	1.58	66	31.7 (t)	1.97, 1.75
25	69.7 (d)	3.85	67	80.1 (d)	4.78
26	45.6 (t)	1.68, 1.59	68	140.0 (s)	
27	71.7 (d)	4.28	69	181.0 (s)	
28	135.6 (d)	5.58	70	150.7 (s)	
29	131.9 (d)	6.21	71	101.1 (d)	5.66
30	133.9 (d)	6.08	72	182.6 (s)	
31	131.1 (d)	5.67	73	154.0 (s)	
32	41.5 (t)	2.28, 2.22	6-Me	12.3 (q)	0.81
33	68.5 (d)	4.10	8-Me	9.2 (q)	0.95
34	51.2 (t)	2.58	10-Me	19.0 (q)	1.02
35	210.1 (s)		14-Me	12.7 (q)	1.71
36	51.8 (t)	2.69, 2.64	16-Me	8.1 (q)	0.93
37	69.3 (d)	4.57	20-Me	15.6 (q)	0.90
38	135.7 (d)	5.67	50-Me	20.3 (q)	0.88
39	131.7 (d)	6.24	64-Me	21.0 (q)	0.98
40	131.7 (d)	6.12	67 -OM e	57.4 (q)	3.21
41	134.5 (d)	6.22	73-SMe	19.2 (g)	2.58
42	134.2 (d)	6.13			

 $J_{6-7} = 10.0$ Hz) and were required to be in a six-membered ring, thereby showing that C-3 was connected to C-7 with an ether linkage.

The geometrical configurations of the olefinic bonds were established to be 11(Z), 28(E), 30(E), 42(E), 60(E), and 62(E)by their vicinal coupling constants $(J_{11-12} = 11.5, J_{28-29} = 15.5, J_{28-29}$ $J_{30-31} = 15.0, J_{38-39} = 15.5, J_{42-43} = 15.0, J_{60-61} = 15.0, \text{ and } J_{62-63}$ = 15.0 Hz). The stereochemistry of C-13 was determined to be (E) on the basis of a high-field chemical shift for 14-CH₃ (δ 12.7)

© 1993 American Chemical Society

⁽¹⁾ Details of the producing organism, fermentation, and isolation of 1 will

⁽³⁾ Piantini, U.; Sorensen, O. W.; Ernst, R. R. J. Am. Chem. Soc. 1982, 104. 6800-6801.

Communications to the Editor

and an NOE observed between 12-H and 14-CH₃. The remaining olefinic bond (C-40) in the triene system was required to have an (*E*) configuration by the ¹³C chemical shift similarity of C-38-C-43 to those of the all-(*E*) triene moiety (δ 132.2, 137.8, 130.7, 135.9, 133.5, and 133.5) of pulvomycin.⁸

The planar structure thus obtained indicates that quinolidomicin A_1 represents a new class of macrolides containing a benzoquinone chromophore and a 60-membered lactone ring, which is far larger than that present in monazomycin,⁹ known to have the largest ring in natural products. Acknowledgment. This work was supported in part by a Grantin-Aid for Cancer Research, The Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: ¹H NMR, ¹³C NMR, HSQC, DQF-COSY, HMBC, HSQC-HOHAHA, NOESY, ¹³Cdecoupled HMBC, and 1-D COSY spectra in CD₃OD for 1; pulse sequence for phase-sensitive ¹³C-decoupled HMBC; and NMR data summary for 1 (25 pages). Ordering information is given on any current masthead page.

⁽⁸⁾ Smith, R. J.; Williams, D. H.; Barna, J. C. J.; McDermott, I. R.; Haegele, K. D.; Piriou, F.; Wagner, J.; Higgins, W. J. Am. Chem. Soc. 1985, 107, 2849-2857.

⁽⁹⁾ Nakayama, H.; Furihata, K.; Seto, H.; Otake, N. Tetrahedron Lett. 1981, 22, 5217-5220.